Non-linear gyro-kinetic Ion Temperature Gradient (ITG) and Trapped Electron Modes (TEM) turbulence modelling in X-point geometry in negative and positive triangularity shapes.

M.Bécoulet¹, G.T.A.Huijsmans¹, X.Garbet^{1,2}, P. Donnel¹, G. Dif-Pradalier¹, Y Sarazin¹, L. Schmitz³, C. Chrystal⁴, A. Marinoni⁵, P. Ulbl⁶, S. Coda⁷, Y. Camenen⁸, M. J. Pueschel ^{9,10}

¹CEA, IRFM, 13108 Saint-Paul-Lez-Durance, France

²School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore

³University of California-Los Angeles, Los Angeles, California 90095, USA

⁴ General Atomics, San Diego, CA 92121, USA

. ⁵Jacobs School of Engineering, University of California San Diego, CA 92093-0403,USA
⁶Max-Planck-Institute for Plasma Physics,85748 Garching, Germany
⁷EPFL-SPC, CH-1015 Lausanne, Switzerland
⁸CNRS, Aix-Marseille Univ., PIIM UMR7345, Marseille, France

⁹Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands ¹⁰Dutch Institute for Fundamental Energy Research, 5612 AJ Eindhoven, Netherlands marina.becoulet@cea.fr

Sufficiently strong negative triangularity (NT) shaping of tokamak plasma prevent the bifurcation to H-mode while leading to high confinement regimes similar to H-mode plasmas but without Edge Localized Modes (ELMs) [1-2]. It could be a promising regime for fusion reactor. In the recent theoretical and numerical studies the conclusions vary depending on the physics included in either local, global, linear or non-linear models, plasma profiles and type of turbulence considered. The most general conclusion by now is that NT shaping is mainly stabilizing for the Trapped Electron Modes (TEMs) [3-5] and possibly also for Ion Temperature Gradient (ITG) modes [7].

The recent results of the comparative modelling of negative (NT) and positive (PT) triangularity plasmas will be presented. The non-linear global gyro-kinetic particle code JOREK-GK [8-9] in the realistic X-point tokamak geometry including Scrape Off Layer (SOL), divertor and walls was used. The equation of motion of gyro-centers of ions is solved in a time varying gyro-averaged electric field and time-constant magnetic field. The kinetic electrons follow the guiding center orbits. Electron-ion collisions are included in the model.

To begin, the comparison of JOREK-GK code with gyro-kinetic codes GS2 [4], GENE-X and GENE [5] was done on a few selected NT/PT triangularity TCV-like parameters. It showed good agreement between codes in linear growth rates of ITG/TEM modes in linear phase and clear beneficial effect of NT as compared to PT. Next, the global non-linear modelling of the ITG/TEM saturated turbulence for realistic DIII-D NT pulses was done and compared with constructed "mirror-flipped" PT equilibrium with the same plasma profiles. The larger time-space correlation of density fluctuations at PT compared to NT was demonstrated explaining larger turbulence and heat fluxes at PT. The direct comparison with experimental heat conductivities and Doppler Backscattering (DBS) measurements of density fluctuations correlation and edge poloidal ExB velocity in DIII-D showed a good agreement with JOREK-GK modelling. Weak dependence of plasma confinement on collisionality was found in NT. Counter-current plasma rotation is stabilizing factor for the edge turbulence since it increases the shear of the poloidal ExB flow. Finally, the confinement scaling with normalized ion radius ρ* was estimated both for NT and PT. Bohm-like scaling was obtained in both configurations, however with better confinement for NT compared to PT which could be favorable factor for reactor size machines with high confinement operation without harmful ELMs.

References:

- [1] M E Austin et al., Phys Rev Letters 122 (2019)115001
- [2] A O Nelson et al, Phys Rev Lett 131(2023) 195101
- [3] X. Garbet et al 2024 Nucl. Fusion 64 106055
- [4] A Marinoni et al Plasma Phys Control Fus 51(2009)
- [5] P Ulbl et al IAEA 29th FEC, 2023, London, UK
- [6] M Becoulet et al IAEA 29th FEC, 2023, London, UK
- [7] G Merlo and F Jenko , J Plasma Phys 89(2023)
- 905890104
- [8] G T A Huysmans et al Plasma Phys Control Fusion 51 (2009) 124012
- [9] M Hoelzl, GTA Huijsmans et al., Nucl. Fusion 61 (2021) 065001