Efficient steady-state predictions of core plasma profiles with delta-f nonlinear gyrokinetics using the PORTALS framework

P. Rodriguez-Fernandez^{1*}, N. T. Howard¹, J. Candy³, A. Saltzman¹, T. Body², D. J. Battaglia², J. W. Hughes¹, A. J. Creely², A. Ho¹, C. Holland⁴

¹MIT Plasma Science and Fusion Center, Cambridge, MA, United States
²Commonwealth Fusion Systems, Devens, MA, United States
³General Atomics, San Diego, California, United States
⁴University of California San Diego, San Diego, CA, United States

*pablorf@mit.edu

Recent advances in efficient transport solvers have enabled nonlinear gyrokinetic profile predictions, marking a paradigm shift in fusion modeling: high-fidelity projections of fusion performance can now be made directly from first-principles turbulence simulations. This paper presents the PORTALS framework [1, 2] and the key advancements that have enabled the efficient solution to the inverse transport problem of delta-f transport models using surrogate-based optimization and uncertainty quantification. PORTALS has been used to predict over 50 multi-channel (T_e , T_i , n_e) flux-matched plasma profiles to date, spanning present-day experiments (DIII-D [3], ASDEX Upgrade [4] and JET [5]) and future devices (SPARC [1, 6], ITER [7] and ARC), supporting both validation efforts and design activities. This paper will also discuss how PORTALS, coupled with nonlinear CGYRO [8] simulations, is used for the projection of SPARC plasmas with high-fidelity turbulence modeling, revealing the importance of edge pressure assumptions and impurity mixes in high-stiffness, ion-temperature-gradient dominated turbulence regimes in near-breakeven and burning plasma conditions.

This work was funded by Commonwealth Fusion Systems under RPP020 and US DoE DE-SC0024399.

- [1] P. Rodriguez-Fernandez et al Nucl. Fusion 62 076036 (2022)
- [2] P. Rodriguez-Fernandez et al Nucl. Fusion 64 076034 (2024)
- [3] N.T. Howard et al Phys. Plasmas 31, 032501 (2024)
- [4] R. Bielajew et al (submitted to Nucl. Fusion)
- [5] P. Rodriguez-Fernandez et al IAEA-FEC (2023)
- [6] P. Rodriguez-Fernandez et al Phys. Plasmas 31, 062501 (2024)
- [7] N.T. Howard et al Nucl.Fusion 65 016002 (2025)
- [8] J. Candy et al Journal of Computational Physics 324, 73–93 (2026)